

Product Information

Recombinant Anti-Human NCA-90 Antibody Fab Fragment

Cat. No.: MOM-18158-F(P)

This product is for research use only and is not intended for diagnostic use.

Product Overview

Recombinant Mouse Antibody Fab Fragment is specific to Human NCA-90, expressed in E. coli

Antigen Description

One of the nonspecific cross-reacting antigens found to be expressed on a variety of cell types. In the nomenclature of CD antigens this protein has been given the designation CD66a. NCA-90 and NCA-50 have the same sequence and the same placement of glycosylation sites despite their differences in molecular masses.

Specific Activity

Tested positive against native antigen.

Target

NCA-90

Immunogen

The details of the immunogen for this antibody are not available.

Source

Mouse

Species Reactivity

Human

Type

Fab Fragment based on Mouse IgG1

Expression Host

E. coli

Purity

Purity >95% by SDS-PAGE.

Applications

Suitable for use in FC, IP, ELISA, Neut, FuncS, IF and most other immunological methods.

Storage

Store at -20°C. Avoid multiple freeze/thaw cycles.

BACKGROUND

Introduction

Mouse monoclonal antibody for the diagnosis of inflammatory lesions.

Keywords
NCA-90; granulocyte antigen; granulocyte cell antigen; CAS NO.: 250242-54-7; 250242-54-7; Lemalesomab