

Product Information

MemDX™ Membrane Protein Human ABCC5 (ATP binding cassette subfamily C member 5)

for Antibody Discovery

Cat. No.: MP0006X

This product is for research use only and is not intended for diagnostic use.

This product is a 50.1 kDa Human ABCC5 membrane protein expressed in *in vitro* wheat germ expression system. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

ABCC5

Protein Length

Full-length

Molecular Weight

50.1 kDa

TMD

13

Sequence

MKDIDIGKEYIIPSPGYRSVRERTSTSGTHRDREDSKFRRTRPLECQDALETAARAEGLSLDASMHSQLRILDEEHPKGKYHHGLSA

Product Description

Application

Enzyme-linked Immunoabsorbent Assay, Western Blot (Recombinant protein), Antibody Production, Protein Array

Expression Systems

in vitro wheat germ expression system

Tag

GST-tag at N-terminal

Form

Liquid

Purification

Glutathione Sepharose 4 Fast Flow

Buffer

50 mM Tris-HCl, 10 mM reduced Glutathione, pH=8.0 in the elution buffer

Storage

Store at +4°C for up to one week or several months at -80°C

Target

Target Protein

ABCC5

Full Name

ATP binding cassette subfamily C member 5

Introduction

The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MRP subfamily which is involved in multi-drug resistance. This protein functions in the cellular export of its substrate, cyclic nucleotides. This export contributes to the degradation of phosphodiesterases and possibly an elimination pathway for cyclic nucleotides. Studies show that this protein provides resistance to thiopurine anticancer drugs, 6-mercatopurine and thioguanine, and the anti-HIV drug 9-(2-phosphonylmethoxyethyl)adenine. This protein may be involved in resistance to thiopurines in acute lymphoblastic leukemia and antiretroviral nucleoside analogs in HIV-infected patients. Alternative splicing results in multiple transcript variants.

Alternative Names

ABC33; DKFZp686C1782; EST277145; MOAT-C; MOATC; MRP5; SMRP; pABC11; ATP-binding cassette, sub-family C, member 5, canalicular multispecific organic anion transporter C

Gene ID

10057

UniProt ID

O15440