

Product Information

MemDX™ Membrane Protein Human ATP6V0C (ATPase H⁺ transporting V0 subunit c)

Cat. No.: **MP0224J**

This product is for research use only and is not intended for diagnostic use.

This product is a 15.6 kDa Human ATP6V0C membrane protein expressed in HEK293T. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

ATP6V0C

Protein Length

Full-length

Protein Class

Transmembrane

Molecular Weight

15.6 kDa

TMD

4

Sequence

MSESKSGPEYASFFAVMGASAAMVFSALGAAYGTAKSGTGIAAMSVMRPEQIMKSIIPVVMAGIIAIYGL
VVAVLIANSNDDISLYKSFLQLGAGLSVGLSGLAAGFAIGIVGDAGVRGTAQQPRLFVGMILILFAEV
LGLYGLIVALILSTK

Product Description

Expression Systems

HEK293T

Tag

C-Myc/DDK

Form

Liquid

Purification

Anti-DDK affinity column followed by conventional chromatography steps

Purity

> 80% as determined by SDS-PAGE and Coomassie blue staining

Buffer

25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol

Storage

Store at +4°C for up to one week or several months at -80°C

Target

Target Protein

ATP6V0C

Full Name

ATPase H⁺ transporting V0 subunit c

Introduction

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A and three B subunits, two G subunits plus the C, D, E, F, and H subunits. The V1 domain contains the ATP catalytic site. The V0 domain consists of five different subunits: a, c, c', c'', and d. This gene encodes the V0 subunit c. Alternative splicing results in transcript variants. Pseudogenes have been identified on chromosomes 6 and 17.

Alternative Names

ATPL; VATL; VPPC; Vma3; ATP6C; ATP6L; ATPase, H⁺ transporting, lysosomal 16kDa, V0 subunit c; H(+)-transporting two-sector ATPase, 16 kDa subunit; V-ATPase 16 kDa proteolipid subunit; vacuolar H⁺ ATPase proton channel subunit

Gene ID

[527](#)

UniProt ID

[P27449](#)