

Product Information

MemDX™ Membrane Protein Human GRIN2C (Glutamate ionotropic receptor NMDA type subunit 2C) for Antibody Discovery

Cat. No.: MP0494X

This product is for research use only and is not intended for diagnostic use.

This product is a 44 kDa Human GRIN2C membrane protein expressed in *in vitro* wheat germ expression system. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

GRIN2C

Protein Length

Full-length

Molecular Weight

44 kDa

TMD

3

Sequence

MGGALGPALLLTSLFGAWAGLGPGQGEQGMTVAVVFSSSGPPQAQFRARLTPQSFLDLPLEIQPLTVGVNTTNPSSLLTQICGLLG

Product Description

Application

Enzyme-linked Immunoabsorbent Assay, Western Blot (Recombinant protein), Antibody Production, Protein Array

Expression Systems

in vitro wheat germ expression system

Tag

GST-tag at N-terminal

Form

Liquid

Purification

Glutathione Sepharose 4 Fast Flow

Buffer

50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer

Storage

Store at +4°C for up to one week or several months at -80°C

Target

Target Protein

GRIN2C

Full Name

Glutamate ionotropic receptor NMDA type subunit 2C

Introduction

This gene encodes a subunit of the N-methyl-D-aspartate (NMDA) receptor, which is a subtype of ionotropic glutamate receptor. NMDA receptors are found in the central nervous system, are permeable to cations and have an important role in physiological processes such as learning, memory, and synaptic development. The receptor is a tetramer of different subunits (typically heterodimer of subunit 1 with one or more of subunits 2A-D), forming a channel that is permeable to calcium, potassium, and sodium, and whose properties are determined by subunit composition. Alterations in the subunit composition of the receptor are associated with pathophysiological conditions such as Parkinson's disease, Alzheimer's disease, depression, and schizophrenia. Alternative splicing results in multiple transcript variants

Alternative Names

NR2C; GluN2C; NMDAR2C

Gene ID

2905

UniProt ID

Q14957