

Product Information

MemDX™ Membrane Protein Human HLA-B (Major histocompatibility complex, class I, B)

for Antibody Discovery

Cat. No.: MP0509X

This product is for research use only and is not intended for diagnostic use.

This product is a 66.9 kDa Human HLA-B membrane protein expressed in *in vitro* wheat germ expression system. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

HLA-B

Protein Length

Full-length

Molecular Weight

66.9 kDa

TMD

1

Sequence

MRVTAPRTVLLLLSGALALTETWAGSHSMRYFYTAMSRPGRGEPRFISVGYVDDTQFVRFDSDAASPREEPRAPWIEQEGPEYWI

Product Description

Application

Enzyme-linked Immunoabsorbent Assay, Western Blot (Recombinant protein), Antibody Production, Protein Array

Expression Systems

in vitro wheat germ expression system

Tag

GST-tag at N-terminal

Form

Liquid

Purification

Glutathione Sepharose 4 Fast Flow

Buffer

50 mM Tris-HCl, 10 mM reduced Glutathione, pH=8.0 in the elution buffer

Storage

Store at +4°C for up to one week or several months at -80°C

Target

Target Protein

HLA-B

Full Name

Major histocompatibility complex, class I, B

Introduction

HLA-B belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from the endoplasmic reticulum lumen. They are expressed in nearly all cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon 1 encodes the leader peptide, exon 2 and 3 encode the alpha1 and alpha2 domains, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region and exons 6 and 7 encode the cytoplasmic tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity of each class one molecule. Typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. Hundreds of HLA-B alleles have been described

Alternative Names

AS; HLAB; B-4901

Gene ID

3106

UniProt ID

P01889