

Product Information

MemDX™ Membrane Protein Human KCNJ11 (Potassium inwardly rectifying channel subfamily J member 11) for Antibody Discovery

Cat. No.: MP0587X

This product is for research use only and is not intended for diagnostic use.

This product is a 69.9 kDa Human KCNJ11 membrane protein expressed in *in vitro* wheat germ expression system. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

KCNJ11

Protein Length

Full-length

Molecular Weight

69.9 kDa

TMD

2

Sequence

MLSRKGIIPEEYVLTRLAEDPAKPRYRARQRRARFVSKKGNCNVAHKNIREQGRFLQDVFTTLVDLKWPHTLLIFTMSFLCSWLLFA

Product Description

Application

Enzyme-linked Immunoabsorbent Assay, Western Blot (Recombinant protein), Antibody Production, Protein Array

Expression Systems

in vitro wheat germ expression system

Tag

GST-tag at N-terminal

Form

Liquid

Purification

Glutathione Sepharose 4 Fast Flow

Buffer

50 mM Tris-HCl, 10 mM reduced Glutathione, pH=8.0 in the elution buffer

Storage

Store at +4°C for up to one week or several months at -80°C

Target

Target Protein

KCNJ11

Full Name

Potassium inwardly rectifying channel subfamily J member 11

Introduction

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and is found associated with the sulfonylurea receptor SUR. Mutations in this gene are a cause of familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion. Defects in this gene may also contribute to autosomal dominant non-insulin-dependent diabetes mellitus type II (NIDDM), transient neonatal diabetes mellitus type 3 (TNDM3), and permanent neonatal diabetes mellitus (PNDM). Multiple alternatively spliced transcript variants that encode different protein isoforms have been described for this gene

Alternative Names

BIR; HHF2; PHHI; IKATP; PNDM2; TNDM3; KIR6.2; MODY13

Gene ID

3767

UniProt ID

Q14654