

Product Information

MemDX™ Antibody Discovery - Human LDL R (22-788) Membrane Protein, Partial, -His -Avi tag, [Biotin]

Cat. No.: **MP0611F**

This product is for research use only and is not intended for diagnostic use.

This membrane protein is Human LDL R (22-788). It has been tested in SDS-PAGE, ELISA. We provide this protein to facilitate your membrane protein antibody discovery and development.

Product Specifications

Host Species

Human

Target Protein

LDL R

Protein Length

ECD

Molecular Weight

The protein has a calculated MW of 88.5 kDa. The protein migrates as 90-150 kDa under reducing (R) condition (SDS-PAGE) due to glycosylation.

Sequence

AA Ala 22 - Arg 788 (Accession # P01130-1).

Product Description

Activity

Yes

Application

SDS-PAGE, ELISA

Expression Systems

HEK293

Tag

His tag at the C-terminus, followed by an Avi tag.

Protein Format

Soluble

Form

LYOPH

Reconstitution

Please see Certificate of Analysis for specific instructions.

Endotoxin

<1.0 EU/µg by the LAL method

Conjugation

Biotin

Purity

>80% as determined by SDS-PAGE.

Buffer

Lyophilized from 0.22 µm filtered solution in PBS, pH7.4. Normally trehalose is added as protectant before lyophilization.

Storage

Stored at lyophilized form at -20°C or lower. Avoid repeated freeze-thaw cycles.

The antigen can be stable for 12 months in lyophilized form after storage at -20°C to -80°C, 3 months under sterile coditions after reconstitution after storage at -80°C.

Target

Target Protein

LDL R

Full Name

low density lipoprotein receptor

Introduction

The low density lipoprotein receptor (LDLR) gene family consists of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. Low density lipoprotein (LDL) is normally bound at the cell membrane and taken into the cell ending up in lysosomes where the protein is degraded and the cholesterol is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis. At the same time, a reciprocal stimulation of cholesterol ester synthesis takes place. Mutations in this gene cause the autosomal dominant disorder, familial hypercholesterolemia. Alternate splicing results in multiple transcript variants.

Alternative Names

FH; FHC; FHCL1; LDLCQ2; low-density lipoprotein receptor; LDL receptor; low-density lipoprotein receptor class A domain-containing protein 3

Gene ID

[3949](#)

UniProt ID

[P01130](#)