

Product Information

MemDX™ Membrane Protein Human ACP2 (Acid phosphatase 2, lysosomal) for Antibody

Discovery

Cat. No.: MP0895J

This product is for research use only and is not intended for diagnostic use.

This product is a 45.1 kDa Human ACP2 membrane protein expressed in HEK293T. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

ACP2

Protein Length

Full-length

Protein Class

Druggable Genome, Transmembrane

Molecular Weight

45.1 kDa

TMD

1

Sequence

MAGKRXXGWSRAALLQLLLGVNLVVMPPTRARSLRFVTLLYRHGDRSPVKTYPKDPYQEEEWPQGFGQLT KEGMLQHWELGQALRQRYHGFLNTSYHRQEVYVRSTDFDRTLMSAEANLAGLFPPNGMQRFNPNISWQPI PVHTVPITEDRLLKFPLGPCPRYEQLQNETRQTPEYQNESSRNAQFLDMVANETGLTDLTLETVWNVYDT LFCEQTHGLRLPPWASPQTMQRLSRLKDFSFRFLFGIYQQAEKARLQGGVLLAQIRKNLTLMATTSQLPK LLVYSAHDTTLVALQMALDVYNGEQAPYASCHIFELYQEDSGNFSVEMYFRNESDKAPWPLSLPGCPHRC PLQDFLRLTEPVVPKDWQQECQLASGPADTEVIVALAVCGSILFLLIVLLLTVLFRMQAQPPGYRHVADG EDHA

Product Description

Expression Systems

HEK293T

Tag

C-Myc/DDK

Form

Liquid

Purification

Anti-DDK affinity column followed by conventional chromatography steps

Purity

> 80% as determined by SDS-PAGE and Coomassie blue staining

Buffer

25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol

Storage

Store at +4°C for up to one week or several months at -80°C

Target

Target Protein

ACP2

Full Name

Acid phosphatase 2, lysosomal

Introduction

The protein encoded by this gene belongs to the histidine acid phosphatase family, which hydrolyze orthophosphoric monoesters to alcohol and phosphate. This protein is localized to the lysosomal membrane, and is chemically and genetically distinct from the red cell acid phosphatase. Mice lacking this gene showed multiple defects, including bone structure alterations, lysosomal storage defects, and an increased tendency towards seizures. An enzymatically-inactive allele of this gene in mice showed severe growth retardation, hair-follicle abnormalities, and an ataxia-like phenotype. Alternatively spliced transcript variants have been found for this gene. A C-terminally extended isoform is also predicted to be produced by the use of an alternative in-frame translation termination codon via a stop codon readthrough mechanism.

Alternative Names

LAP

Gene ID

53

UniProt ID

P11117