

Product Information

MemDX™ Membrane Protein Human ATP6V0D1 (ATPase H⁺ transporting V0 subunit d1) expressed in E.coli for Antibody Discovery

Cat. No.: **MP1394J**

This product is for research use only and is not intended for diagnostic use.

This product is a 67.3 kDa Human ATP6V0D1 membrane protein expressed in E.coli. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

ATP6V0D1

Protein Length

Full-length

Protein Class

Ion Channel

Molecular Weight

67.3 kDa

Sequence

MSFFPELYFNVDNGYLEGIVRGLKAGVLSQADYLNVQCETLEDLKLHLQSTDYGNFLANEASPLTVSVIDDRLKEKMVVEFRHMR

Product Description

Expression Systems

E.coli

Tag

N-GST

Form

Liquid or Lyophilized powder

Reconstitution

Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. We recommend to add 5-50% of glycerol (final concentration).

Purity

>85% as determined by SDS-PAGE

Buffer

Liquid: Tris/PBS-based buffer, 5%-50% glycerol

Lyophilized powder: Tris/PBS-based buffer, 6% Trehalose, pH 8.0

Storage

Store at +4°C for up to one week or several months at -80°C

Target

Target Protein

ATP6V0D1

Full Name

ATPase H⁺ transporting V0 subunit d1

Introduction

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A and three B subunits, two G subunits plus the C, D, E, F, and H subunits. The V1 domain contains the ATP catalytic site. The V0 domain consists of five different subunits: a, c, c', c'', and d. Additional isoforms of many of the V1 and V0 subunit proteins are encoded by multiple genes or alternatively spliced transcript variants. This encoded protein is known as the D subunit and is found ubiquitously.

Alternative Names

32 kDa accessory protein; ATP6D; ATP6DV; ATP6V0D1; ATPase H⁺ transporting lysosomal (vacuolar proton pump) member D; ATPase H⁺ transporting lysosomal 38kD V0 subunit d; ATPase H⁺ transporting lysosomal 38kDa V0 subunit d1; ATPase H⁺ transporting lysosomal V0 subunit d1; H(+) transporting two sector ATPase subunit D; p39; V ATPase 40 kDa accessory protein; V ATPase AC39 subunit; V ATPase subunit d 1; V ATPase subunit D; V-ATPase 40 kDa accessory protein; V-ATPase AC39 subunit; V-ATPase subunit d 1; V-type proton ATPase subunit d 1; VA0D1_HUMAN; Vacuolar ATP synthase subunit d 1; Vacuolar proton pump subunit d 1; VATX; VMA 6; VMA6; VPATPD

Gene ID

[9114](#)

UniProt ID

[P61421](#)