

Product Information

MemDX™ Membrane Protein Human KCNJ11 (Potassium inwardly rectifying channel subfamily J member 11) Full Length

Cat. No.: MPC0603K

This product is for research use only and is not intended for diagnostic use.

This product is a 43.5 kDa Human KCNJ11 membrane protein expressed in HEK293. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

KCNJ11

Protein Length

Full length

Protein Class

Transporter; Ion channel

Molecular Weight

43.5 kDa

TMD

2

Sequence

MLSRKGIIPEEYVLTRLAEDPAEPRYRARQRRARFVSKKGNCNVAHKNIR EQGRFLQDVFTTLVDLKWPHTLLIFTMSFLCSWLLFAMAWWLIAFAHGDL APSEGTAEPCVTSIHSFSSAFLFSIEVQVTIGFGGRMVTEECPLAILILI VQNIVGLMINAIMLGCIFMKTAQAHRRAETLIFSKHAVIALRHGRLCFML RVGDLRKSMIISATIHMQVVRKTTSPEGEVVPLHQVDIPMENGVGGNSIF LVAPLIIYHVIDANSPLYDLAPSDLHHHQDLEIIVILEGVVETTGITTQA RTSYLADEILWGQRFVPIVAEEDGRYSVDYSKFGNTIKVPTPLCTARQLD EDHSLLEALTLASARGPLRKRSVPMAKAKPKFSISPDSLS

Product Description

Expression Systems

HEK293

Tag

Based on specific requirements

Protein Format

Detergent or based on specific requirements

Form

Liquid

Storage

Aliquot and store at -20°C or lower. For long term storage, we recommend to store at -70°C or lower. Avoid freeze/thaw cycles.

Target

Target Protein

KCNJ11

Full Name

Potassium inwardly rectifying channel subfamily J member 11

Introduction

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and is found associated with the sulfonylurea receptor SUR. Mutations in this gene are a cause of familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion. Defects in this gene may also contribute to autosomal dominant non-insulin-dependent diabetes mellitus type II (NIDDM), transient neonatal diabetes mellitus type 3 (TNDM3), and permanent neonatal diabetes mellitus (PNDM). Multiple alternatively spliced transcript variants that encode different protein isoforms have been described for this gene.

Alternative Names

BIR; HHF2; PHHI; IKATP; PNDM2; TNDM3; KIR6.2; MODY13; ATP-sensitive inward rectifier potassium channel 11; beta-cell inward rectifier subunit; inward rectifier K(+) channel Kir6.2; inwardly rectifing potassium channel subfamily J member 11; inwardly rectifying potassium channel KIR6.2; inwardly-rectifying potassium channel subfamily J member 11; potassium channel inwardly rectifying subfamily J member 11; potassium voltage-gated channel subfamily J member 11; KCNJ11; Potassium inwardly rectifying channel subfamily J member 11

Gene ID

3767

UniProt ID

Q14654