

Product Information

MemDX™ Membrane Protein Human EBP (EBP cholestenol delta-isomerase) Full Length

Cat. No.: **MPC1101K**

This product is for research use only and is not intended for diagnostic use.

This product is a 26.3 kDa Human EBP membrane protein expressed in HEK293. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

EBP

Protein Length

Full length

Protein Class

Transporter

Molecular Weight

26.3 kDa

TMD

4

Sequence

MTTNAGPLHPWPQHLRLDNFVPNDRPTWHILAGLFSVTGVLVVTTWLLS
GRAAVVPLGTWRRSLCWFAVCGFHLVIEGWFVLYYEDLLGDQAFLSQL
WKEYAKGDSRYILGDNFTVCMETITACLWGPLSLWVVIAFLRQHPLRFIL
QLVSVGVQIYGDVLYFLTEHRDGFQHGEGLGHPLYFWFYFVFMNALWLVP
GVLVLDAVKHLTHAQSTLDAKATKAKSKKN

Product Description

Expression Systems

HEK293

Protein Format

Detergent or based on specific requirements

Form

Liquid

Storage

Aliquot and store at -20°C or lower. For long term storage, we recommend to store at -70°C or lower. Avoid freeze/thaw cycles.

Target

Target Protein

EBP

Full Name

EBP cholestenol delta-isomerase

Introduction

The protein encoded by this gene is an integral membrane protein of the endoplasmic reticulum. It is a high affinity binding protein for the antiischemic phenylalkylamine Ca2+ antagonist [3H]emopamil and the photoaffinity label [3H]azidopamil. It is similar to sigma receptors and may be a member of a superfamily of high affinity drug-binding proteins in the endoplasmic reticulum of different tissues. This protein shares structural features with bacterial and eukaryontic drug transporting proteins. It has four putative transmembrane segments and contains two conserved glutamate residues which may be involved in the transport of cationic amphiphilics. Another prominent feature of this protein is its high content of aromatic amino acid residues (>23%) in its transmembrane segments. These aromatic amino acid residues have been suggested to be involved in the drug transport by the P-glycoprotein. Mutations in this gene cause Chondrodysplasia punctata 2 (CDPX2; also known as Conradi-Hunermann syndrome).

Alternative Names

EBP; CPX; CHO2; CPXD; MEND; CDPX2; 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase; 3-beta-hydroxysteroid-delta-8,delta-7-isomerase; Chondrodysplasia punctata-2, X-linked dominant (Happle syndrome); D8-D7 sterol isomerase; cholestenol Delta-isomerase; delta(8)-Delta(7) sterol isomerase; emopamil binding protein (sterol isomerase); emopamil-binding protein; sterol 8-isomerase; EBP cholestenol delta-isomerase

Gene ID

[10682](#)

UniProt ID

[Q15125](#)