

Product Information

MemDX™ Membrane Protein Human KCNJ3 (Potassium inwardly rectifying channel subfamily J member 3) Expressed *in vitro E.coli* expression system, Full Length

Cat. No.: MPX1864K

This product is for research use only and is not intended for diagnostic use.

This product is a Human KCNJ3 membrane protein expressed *in vitro E.coli* expression system. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

KCNJ3

Protein Length

Full Length

Protein Class

Ion channel, Transport

TMD

2

Sequence

 ${\tt MSALRRKFGDDYQVVTTSSSGSGLQPQGPGQDPQQQLVPKKKRQRFVDKNGRCNVQHGNLGSETSRYLSDLFTTLVDLKWRWN} \\$

Product Description

Expression Systems

in vitro E.coli expression system

Tag

10xHis tag at the N-terminus

Protein Format

Soluble

Form

Liquid or Lyophilized powder

Buffer

Tris/PBS-based buffer, 6% Trehalose, pH 8.0

Storage

Aliquot and store at -20°C or lower. For long term storage, we recommend to store at -70°C or lower. Avoid freeze/thaw cycles.

Target

Target Protein

KCNJ3

Full Name

Potassium inwardly rectifying channel subfamily J member 3

Introduction

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and plays an important role in regulating heartbeat. It associates with three other G-protein-activated potassium channels to form a heteromultimeric pore-forming complex that also couples to neurotransmitter receptors in the brain and whereby channel activation can inhibit action potential firing by hyperpolarizing the plasma membrane. These multimeric G-protein-gated inwardly-rectifying potassium (GIRK) channels may play a role in the pathophysiology of epilepsy, addiction, Down's syndrome, ataxia, and Parkinson's disease. Alternative splicing results in multiple transcript variants encoding distinct proteins.

Alternative Names

KCNJ3; KGA; GIRK1; KIR3.1; G protein-activated inward rectifier potassium channel 1; GIRK-1; inward rectifier K(+) channel Kir3.1; inward rectifier K+ channel KIR3.1; potassium channel, inwardly rectifying subfamily J member 3; potassium inwardly-rectifying channel subfamily J member 3; Potassium inwardly rectifying channel subfamily J member 3

Gene ID

3760

UniProt ID

P48549