

Product Information

MemDX™ Membrane Protein Human EBP (EBP cholestenol delta-isomerase) Expressed *in vitro* *E.coli* expression system, Full Length of Mature Protein

Cat. No.: **MPX2248K**

This product is for research use only and is not intended for diagnostic use.

This product is a Human EBP membrane protein expressed *in vitro* *E.coli* expression system. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

Host Species

Human

Target Protein

EBP

Protein Length

Full Length of Mature Protein

Protein Class

Receptor

TMD

4

Sequence

TTNAGPLHPYWPQHLRLDNFVPNDRPTWHILAGLFSVTGVLVTTWLLSGRAAVVPLGTWRRSLCWFAVCGFIHLVIEGWFVLYY

Product Description

Expression Systems

in vitro *E.coli* expression system

Tag

10xHis tag at the N-terminus

Protein Format

Soluble

Form

Liquid or Lyophilized powder

Buffer

Tris/PBS-based buffer, 6% Trehalose, pH 8.0

Storage

Aliquot and store at -20°C or lower. For long term storage, we recommend to store at -70°C or lower. Avoid freeze/thaw cycles.

Target

Target Protein

EBP

Full Name

EBP cholestenol delta-isomerase

Introduction

The protein encoded by this gene is an integral membrane protein of the endoplasmic reticulum. It is a high affinity binding protein for the antiischemic phenylalkylamine Ca2+ antagonist [3H]emopamil and the photoaffinity label [3H]azidopamil. It is similar to sigma receptors and may be a member of a superfamily of high affinity drug-binding proteins in the endoplasmic reticulum of different tissues. This protein shares structural features with bacterial and eukaryontic drug transporting proteins. It has four putative transmembrane segments and contains two conserved glutamate residues which may be involved in the transport of cationic amphiphilics. Another prominent feature of this protein is its high content of aromatic amino acid residues (>23%) in its transmembrane segments. These aromatic amino acid residues have been suggested to be involved in the drug transport by the P-glycoprotein. Mutations in this gene cause Chondrodysplasia punctata 2 (CDPX2; also known as Conradi-Hunermann syndrome).

Alternative Names

EBP; CPX; CHO2; CPXD; MEND; CDPX2; 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase; 3-beta-hydroxysteroid-delta-8,delta-7-isomerase; Chondrodysplasia punctata-2, X-linked dominant (Happle syndrome); D8-D7 sterol isomerase; cholestenol Delta-isomerase; delta(8)-Delta(7) sterol isomerase; emopamil binding protein (sterol isomerase); emopamil-binding protein; sterol 8-isomerase; EBP cholestenol delta-isomerase

Gene ID

[10682](#)

UniProt ID

[Q15125](#)