Anti-E. coli Stx2A (Setoxaximab)-SPDB-DM4 ADC (ADC-W-2481)

This ADC product is comprised of an anti-E. coli Stx2A monoclonal antibody conjugated via a SPDB linker to DM4. The DM4 is targeted to certain cancers by immunerecognition and delivered into cancer cells via receptor mediated endocytosis. Within the cell, DM1 binds to tubulins, interrupts microtubule dynamics, and subsequently, induces cell death.

 ADC Target

  • Name
  • E. coli Stx2A
  • Alternative Names
  • E. coli Stx2A
  • Overview
  • Shiga toxins are a family of related toxins with two major groups, Stx1 and Stx2, expressed by genes considered to be part of the genome of lambdoid prophages. The toxins are named for Kiyoshi Shiga, who first described the bacterial origin of dysentery caused by Shigella dysenteriae. The most common sources for Shiga toxin are the bacteria S. dysenteriae and the shigatoxigenic group of Escherichia coli (STEC), which includes serotypes O157:H7, O104:H4, and other enterohemorrhagic E. coli (EHEC).

 ADC Antibody

  • Overview
  • Anti-E. coli Stx2A IgG1-kappa antibody, Setoxaximab
  • Generic name
  • Setoxaximab
  • Host animal
  • Mouse

 ADC Linker

  • Name
  • SPDB (N-succinimidyl-4-(2-pyridyldithio)butyrate)
  • Description
  • Disulfide Linkers, are extensively exploited as a chemically labile linkage. Since the release of disulfide-linked drugs requires a cytoplasmic thiol cofactor, such as glutathione (GSH). Disulfides maintain stable at physiological pH and only when ADCs are internalized inside cells, the cytosol provides reducing environment including intracellular enzyme protein disulfide isomerase, or similar enzymes, drugs can be released.

 ADC payload drug

  • Name
  • DM4 (N2'-Deacetyl-N2'-(4-mercapto-4-methyl-1-oxopentyl)maytansine)
  • Description
  • Derived from Maytansinoid,a group of cytotoxins structurally similar to rifamycin, geldanamycin, and ansatrienin. The eponymous natural cytotoxic agent maytansine is a 19-member lactam (ansa macrolide) structure originally isolated from the Ethiopian shrub Maytenus ovatus. Maytansinoids can bind to tubulin at or near the vinblastine-binding site, which interfere the formation of microtubules and depolymerize already formed microtubules, inducing mitotic arrest in the intoxicated cells.

For Research Use Only. NOT FOR CLINICAL USE.


Related Products


Online Inquiry
Name:
*Phone:
*E-mail Address:
*Products or Services Interested:
Company/Institution
Project Description:









Customized FluoroAb™

Welcome! For price inquiries, please feel free to contact us through the form on the left side. We will get back to you as soon as possible.

Contact us
USA
 
 Tel:
 Fax:
 Email:
Europe
 
 Tel:
 Email:
Germany
 
 Tel:
 Email:


Inquiry

Top