Anti-ITIH4-MCC-DM1 ADC (ADC-W-227)

This ADC product is comprised of an anti-gp120 monoclonal antibody conjugated via a MCC linker to DM1. The DM1 is targeted to certain cancers by immunerecognition and delivered into cancer cells via receptor mediated endocytosis. Within the cell, DM1 binds to tubulins, interrupts microtubule dynamics, and subsequently, induces cell death.

 ADC Target

  • Name
  • ITIH4
  • Alternative Names
  • H4P; IHRP; GP120; PK120; ITIHL1; PK-120; ITI-HC4
  • Target Entrez Gene ID
  • 3700
  • Overview
  • The protein encoded by this gene is secreted into the blood, where it is cleaved by plasma kallikrein into two smaller forms. Expression of this gene has been detected only in liver, and it seems to be upregulated during surgical trauma. This gene is part of a cluster of similar genes on chromosome 3. Two transcript variants encoding different isoforms have been found for this gene.

 ADC Antibody

  • Overview
  • Anti-ITIH4 IgG1 Antibody
  • Species Reactivity
  • Mouse

 ADC Linker

  • Name
  • MCC (Maleimidomethyl cyclohexane-1-carboxylate)
  • Description
  • Noncleavable linkers, is considered noncleavable-meaning linker cleavage, and payload release does not depend on the differential properties between the plasma and some cytoplasmic compartments. Instead, the release of the cytotoxic drug is postulated to occur after internalization of the ADC via antigen-mediated endocytosis and delivery to lysosomal compartment, where the antibody is degraded to the level of amino acids through intracellular proteolytic degradation.

 ADC payload drug

  • Name
  • DM1 (N2’-Deacetyl-N2’-(3-mercapto-1-oxopropyl)maytansine)
  • Description
  • Derived from Maytansinoid,a group of cytotoxins structurally similar to rifamycin, geldanamycin, and ansatrienin. The eponymous natural cytotoxic agent maytansine is a 19-member lactam (ansa
    macrolide) structure originally isolated from the Ethiopian shrub Maytenus ovatus. Maytansinoids can bind to tubulin at or near the vinblastine-binding site, which interfere the formation of microtubules and depolymerize already formed microtubules, inducing mitotic arrest in the intoxicated cells.

Related Products


Online Inquiry
Name:
*Phone:
*E-mail Address:
*Products or Services Interested:
Company/Institution
Project Description:
*Verification Code:
Please input "biolabs"(case insensitive) as verification code.


Welcome! For price inquiries, please feel free to contact us through the form on the left side. We will get back to you as soon as possible.


Contact us
USA
 45-1 Ramsey Road, Shirley, NY 11967, USA
 Tel: 1-631-357-2254
 Fax: 1-631-207-8356
 Email:
Europe
Heidenkampsweg 58, 20097 Hamburg, Germany
 Tel: 44-207-097-1828
 Email:

Inquiry

Top