With the advent of new antibody engineering technologies, conventional antibodies have been minimized into smaller antibody formats. Endowed by continuously improved technical methods, single domain antibodies (sdAbs) have become proficient tools in diagnostics due to their unique biochemical, biophysical, and pharmacological characteristics. Creative Biolabs has engaged in the in vitro and in vivo diagnostic field for many years and accumulated rich experience in the development of diagnostic tools for academic use. We now provide customized sdAb-based detection tool development services for global clients.

SdAbs as Sensitive Detection Probes

Detection probes should ideally meet most of the following characteristics: high probe accessibility, stability and selectivity towards the target, even in complex samples, and cost-effective large-scale production. On the one hand, probe accessibility is determined by probe size. When small antibody fragments such as sdAbs are coated on adsorptive plates, the vicinity of the adsorbing surface might hinder the antigen-probe interaction. On the other hand, probe accessibility is also dependent on a uniform, directional probe orientation. Promisingly, many approaches have been proposed to address these problems. For instance, the accessibility of coated sdAbs in ELISA can be improved by C-terminal peptide extension such as provided by a myc/His-tag or by fusion to Fc chain.

Overview of different probes used in microscopy.Fig.1 Overview of different probes used in microscopy. (De Beer, 2020)

Due to the intrinsic stability and smaller size, sdAbs exhibit a better denaturation resistance during harsh probe regeneration, and a higher probe density that mediates an enhanced detection sensitivity in surface plasmon resonance (SPR)-based detection systems. SdAbs have also been evaluated as capturing ligands in antibody-based slide and bead arrays. For instance, small amounts of bacterial lysates containing in vivo biotinylated sdAbs have been applied to streptavidin beads and used for sensitive biomarker detection in patient sera.

SdAb for Pathogen Diagnosis

For pathogen diagnosis, many sdAbs have been developed in case the performance of available monoclonal antibodies (mAbs) is unsatisfactory. For instance, sdAb has been used successfully to distinguish between Brucella and Yersinia infections in livestock but traditional mAbs have failed. Similarly, species-specific sdAbs for the detection of Taenia solium infection in pigs complement the existing genus-specific mAbs.

In a previous study, a sdAb-based agglutination reagent has been evaluated for HIV diagnosis. The reagent comprises the fusion between an HIV antigen (HIV-1 p24) and a red blood cell-specific sdAb. The presence of anti-p24 antibodies in HIV-positive serum then mediates agglutination upon the addition of the p24-sdAb fusion proteins. Based on this approach, diagnosing a variety of diseases could be possible when disease-specific antigens are available.

What Can We Do for You?

To maximize the potential of sdAbs, Creative Biolabs has established methods to fuse them with highly sensitive enzymatic or antigenic reporters. These Nano-reporters (fusions of reporter and sdAb) can be readily produced in cultured cells, purified in a single step, used to label cells or tissue, and stored indefinitely in the form of DNA or DNA sequences. In theory, nano-reporters contain the following six elements:

  • An N-terminal mammalian signal peptide
  • A HA epitope tag to enable immunochemical detection of the protein independent of its binding and enzymatic activities
  • A sdAb
  • Spacer
  • Reporter such as HRP
  • A His epitope tag to enable one-step affinity purification of the protein
SdAbs as Sensitive Detection Tools

Services

Given the rapidly increasing rate of sdAb generation, our Nano-reporter platform provides a versatile and scalable platform for immunohistochemical and biochemical analyses. If you are interested in our services, please directly contact us for more information.

Reference

  1. De Beer, M. A.; Giepmans, B. N. sdAb-Based Probes for Subcellular Protein Identification and Visualization. Frontiers in Cellular Neuroscience. 2020, 14: 352.

For Research Use Only.



Online Inquiry
Name:
*Phone:
*E-mail Address:
*Service & Products Interested:
Project Description:
Contact Us USA

Tel:
Fax:
Email:
UK

Tel:
Email:

Germany

Tel:
Email:

Follow us on:
Copyright © 2024 Creative Biolabs.
Inquiry Basket