ATP11B Membrane Protein Introduction

Introduction of ATP11B

ATP11B is encoded by ATP11B gene. It belongs to P4-ATPases family, which can preferentially translocate phosphatidylserine of cell membrane. It commonly exists in several tissues, such as neural stem cells, kidney, testis, as well as ovary. Meanwhile, some studies conducted on ATP11B suggest that it is related to many diseases, like ovarian cancer.

Basic Information of ATP11B
Protein Name Probable phospholipid-transporting ATPase IF
Gene Name ATP11B
Aliases ATPIF, ATPIR, KIAA0956
Organism Homo sapiens (Human)
UniProt ID Q9Y2G3
Transmembrane Times 10
Length (aa) 1177

Function of ATP11B Membrane Protein

ATP11B is a member of P-type ATPases family, which is phosphorylated in their intermediate state and drives uphill transport of ions across membranes. It plays a critical role in many cellular processes associated with the plasma membrane and intracellular membranes. Previous studies indicate that most mammalian ATP11B use CDC50A as their β-subunit. Researches show it is highly expressed on kidney, ovary, which indicate that it may associated with these tissues-related diseases. Moreover, it may be a potential biomarker in clinical therapy.

Phylogenetic analysis and membrane topology of P4-ATPases. Fig.1 Phylogenetic analysis and membrane topology of P4-ATPases. (Andersen, 2016)

Application of ATP11B Membrane Protein in Literature

  1. Wang J., et al. Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology. Methods Mol Biol. 2017, 1622: 51-61. PubMed ID: 28674800

    This article reports that the effects of ATP11B on the morphology change of neural stem cells by using RNAi. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.

  2. Moreno-Smith M., et al. ATP11B mediates platinum resistance in ovarian cancer. J Clin Invest. 2018, 128(7):3199. PubMed ID: 29809169

    This article reveals that the expression level of ATP11B is possibly related with higher tumor grade in human ovarian cancer samples and with cisplatin resistance in human ovarian cancer cell lines.

  3. Elsnerova K., et al. Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma. Oncol Rep. 2016, 35(4), 2159-70. PubMed ID: 26820484

    Authors in this group analyze the gene expression profile of 39 ABC and 12 SLC transporters and three ATPases (ATP7A, ATP7B and ATP11B) in epithelial ovarian cancer tissues and address their putative role in prognosis and clinical course of epithelial ovarian cancer patients.

  4. Halleck M.S., et al. Reanalysis of ATP11B, a type IV P-type ATPase. J Biol Chem. 2002, 277(12): 9736-40. PubMed ID: 11790799

    This article conducts an ATP11B reanalysis assay, including DNA sequencing, sequence comparisons and analysis using PCR. The results illustrate that the transmembrane domain 4 (exon 12) can be identified not only in human ATP11B, but also in a number of animal species, such as rabbits and mice, which indicates that ATP11B may play a critical role in encoding the RING finger-binding protein.

  5. Drögemüller C., et al. Mapping of the ATP11B gene and refined localization of the SOX2 and FXR1 genes to BTA1q33. Anim Genet. 2004, 35(6): 499-501. PubMed ID: 15566487

    Authors in this group analyze three deletions (SOX2, FXR1 and ATP11B) to map possible breakpoints on the homologous bovine chromosome. The data indicates that three bovine BAC clones targeting BTA1q33 have been developed for further eye malformation research in cattle.

ATP11B Preparation Options

To obtain the soluble and functional target protein, the versatile Magic™ membrane protein production platform in Creative Biolabs enables many flexible options, from which you can always find a better match for your particular project. Aided by our versatile Magic™ anti-membrane protein antibody discovery platform, we also provide customized anti-ATP11B antibody development services.

As a forward-looking research institute as well as a leading custom service provider in the field of membrane protein, Creative Biolabs has won good reputation among our worldwide customers for successfully accomplishing numerous challenging projects including generation of many functional membrane proteins. Please feel free to contact us for more information.


  1. Andersen J P, et al. (2016). P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front Physiol. 7: 275.

All listed customized services & products are for research use only, not intended for pharmaceutical, diagnostic, therapeutic or any in vivo human use.

Online Inquiry

Verification code
Click image to refresh the verification code.


USA: 45-1 Ramsey Road, Shirley, NY 11967, USA
Europe: Heidenkampsweg 58, 20097 Hamburg, Germany
Call us at:
USA: 1-631-381-2994
Europe: 44-207-097-1828
Fax: 1-631-207-8356
Our customer service representatives are available 24 hours a day, 7 days a week. Contact Us