Contact Us

    • fax
    • address
    • Global Locations

Oncolytic Vaccinia Virus

Oncolytic vaccinia virus (VACV) has emerged as an attractive therapeutic candidate for cancer treatment due to its inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. With years of experience in immunology and oncology, Creative Biolabs has established a comprehensive platform - OncoVirapy™ for providing oncolytic VACV design, engineering and construction services.

Brief Introduction of Oncolytic VACV

Oncolytic Vaccinia Virus

Vaccinia virus (VACV or VV) is a large, complex, enveloped DNA virus which belongs to the poxvirus family. It has a linear, double-stranded DNA genome approximately 190 kb in length, encoding approximately 250 genes. VACV is a naturally oncolytic virus which was found to have a natural tropism for tumor cells due to its sensitivity to type I interferon. The strains Lister, Wyeth, and Western Reserve are the most used in OV research, both of which can incorporate large amounts of foreign DNA without reducing their replication efficiency. Moreover, VACV entry does not have a specific receptor which makes it a potential candidate for the treatment of all tumor types. VACV has many inherent characteristics that make it an ideal choice for oncolytic virotherapy, including the ability to infect a wide range of tumor types with efficient infection and gene expression, a large amount of foreign DNA to be incorporated and potent lytic activity, selectively target and infect cancer cells in vivo.

Vaccinia virus strains. Table.1 Vaccinia virus strains. (Guse, 2011)

Recombinant Oncolytic VACV

Recent advances in DNA recombinant technology enabling the rational manipulation of the VACV backbone, coupled with the ever increasing knowledge gains in the fields of molecular virology and cancer cell biology have aided the development of safe and efficacious tumor-targeted oncolytic VACVs. Four major advances have recently been made to recombinant VACVs to improve their utility as OVs.

Common genes of VACV genetic engineering to enhance tumor specificity. Table.2 Common genes of VACV genetic engineering to enhance tumor specificity.

Common genes of VACV to modulate immune responses. Table.3 Common genes of VACV to modulate immune responses. (Guo, 2019)

Examples of oncolytic VACV used in preclinical studies. Table.4 Examples of oncolytic VACV used in preclinical studies. (Guo, 2019)

Featured Services and Construction Workflow

We provide a comprehensive range of VACV services based on our advanced OncoVirapy™ platform.

Workflow of oncolytic VACV construction at Creative Biolabs. Fig.2 Workflow of oncolytic VACV construction at Creative Biolabs.

Oncolytic VACV has been shown to be a safe and promising anti-cancer agent. Nowadays as a tool for delivering genes into cancer cells, the vaccinia virus shows promising clinical efficacy not only in medicine laboratory but also in Phase I and Phase II trials. Moreover, VACVs are being investigated in combination with various other anti-cancer strategies, including chemo-, radio-, and immunotherapies as well as other oncolytic VACVs. The OncoVirapy™ platform in the Creative Biolabs provides a one-stop solution to oncolytic virus construction and engineering. We also provide customized oncolytic vaccinia virus and proof-of-concept in vitro and in vivo validation study for the oncolytic VACVs. 


  1. Guo, Z. S.; et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. Journal for immunotherapy of cancer. 2019, 7(1): 6.
  2. Guse, K.; et al. Oncolytic vaccinia virus for the treatment of cancer. Expert opinion on biological therapy. 2011, 11(5): 595-608.

Please feel free to contact us for a quote and further discussion with our scientists.

All services and products are for lab research only, not for any clinical use.

Online Inquiry

  • Verification code
    Click image to refresh the verification code.

Contact Us

  • fax

Contact Us

Copyright © 2021 Creative Biolabs. All Rights Reserved