Close
Solutions
Online Inquiry
Global Services

Anti-FBP CAR-T Preclinical In Vivo Assay

All products and services are For Research Use Only and CANNOT be used in the treatment or diagnosis of disease.

Target Background

Folate-binding protein (FBP) is over-expressed in more than 90% of ovarian and endometrial cancers as well as 20-50% of breast, lung, colorectal, and renal cell carcinomas. It has very limited distribution in normal tissues, which makes it a potential immunotherapy target and also a marker for ovarian cancer. One of FBP's monoclonal antibodies MOv18 has given rise to a very strong scFv, MOv-gamma, which is used to generate CAR construct for T cell transduction. This CAR has been shown to be able to recognize FBP and thus lead to T cell activation, specific lysis, and cytokine release.

Anti-FBP CAR-T Preclinical in vivo Assay

Anti-FBP CAR-T Cell Therapy

Phase I clinical trial (NCT00019136) has been completed to study the effectiveness of interleukin-2 (IL-2, may stimulate white blood cells to kill ovarian cancer cells) and anti-FBP CAR-modified peripheral blood mononuclear lymphocytes (anti-FBP CAR-PBML) in treating patients bearing advanced ovarian epithelial cancer.

Animal Models for in vivo Study of anti-FBP CAR-T Cell Therapy

Orthotopic xenograft models for ovarian cancer are established by serial passaging of human ovarian cancer cells IGROV-1 in the abdominal cavity of nude mice until the line consistently grew as ascites. Due to the fact that the most common and earliest mode of dissemination of ovarian cancer in patients is by exfoliation of cells that implanting along the surfaces of the peritoneal cavity, an intraperitoneal tumor model is considered to be particularly appropriate for ovarian cancer. Intervention study initiates when significant disease attributes appeared, usually within a week after tumor injection according to our pre-experiments. Professional disease monitoring, survival curve as well as related histopathological analysis will be involved in the study, and any customized service is also welcomed.
Subcutaneous and patient-derived xenograft models for ovarian cancer
Beyond what addressed above, alternative tumor models such as the subcutaneous mice models generated by human ovarian cancer cell lines including A2780, A2780l-luc, ES-2, HO-8910PM, PA-1, IGR0V1, OVCAR-3, OVCAR-5, SK-OV-3, TOV-21G are also available at Creative Biolabs. In addition, similarity of patient-derived xenograft (PDX) model to clinical background renders it priority of the utility in the preclinical research. PDX models of ovarian cancer provided by Creative Biolabs are derived from the following backgrounds of diagnosis such as ovarian serous adenocarcinoma and papillary serous adenocarcinoma. We are always passionate about introducing our well-established animal models to in vivo tests of adoptive cell therapy.

In vivo Assay Parameters and Techniques
At Creative Biolabs, we offer the most exquisite and comprehensive service platform for anti-FBP CAR-T cell therapy research.
Efficacy Test
Tumor remission monitored by tumor volume recording or bioluminescence imaging and survival curve tracking
Viability and Bio-distribution Studies
Durability, GLP-compliant bio-distribution studies
GLP-compliant Toxicity Evaluation
Pilot Tolerability
MTD, The route of administration, Dose regimen/response/onset
Clinical observation (body weight, feed consumption, ophthalmologic and clinical pathology)
Complete necropsy, organ weight
Histopathology
Tumorigenicity study
GLP-Compliant Preclinical Test
All our experiments are performed by well-trained and experienced technicians in a GLP-compliant and IACUC-regulated facility.

By virtue of the widespread distribution of FBP in cancers other than ovarian such as breast, lung, colon, and renal cell carcinomas, Creative Biolabs will also assist customers in the modeling as well as every rigorous step involved in the preclinical research of FBP targeted cell therapy.

References

  1. Hwu, P., et al. "In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes." Cancer Research 55.15 (1995): 3369-3373.
  2. Campbell, et al. "Folate-binding protein is a marker for ovarian cancer." Cancer Research 51.19 (1991): 5329-5338.
  3. Coney, et al. "Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein." Cancer Research51.22 (1991): 6125-6132.
  4. Preston, et al. "Immunity and immune suppression in human ovarian cancer." (2011).
Online Inquiry

For any technical issues or product/service related questions, please leave your information below. Our team will contact you soon.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Key Updates
Newsletter NEWSLETTER

The latest newsletter to introduce the latest breaking information, our site updates, field and other scientific news, important events, and insights from industry leaders

LEARN MORE NEWSLETTER
New Solution NEW SOLUTION

CellRapeutics™ In Vivo Cell Engineering: One-stop in vivo T/B/NK cell and macrophage engineering services covering vectors construction to function verification.

LEARN MORE SOLUTION
NOVEL SOLUTION NOVEL TECHNOLOGY

Silence™ CAR-T Cell: A novel platform to enhance CAR-T cell immunotherapy by combining RNAi technology to suppress genes that may impede CAR functionality.

LEARN MORE NOVEL TECHNOLOGY
NEW TECHNOLOGY NEW SOLUTION

Canine CAR-T Therapy Development: From early target discovery, CAR design and construction, cell culture, and transfection, to in vitro and in vivo function validation.

LEARN MORE SOLUTION
Receive our latest news and insights.