Close
Solutions
Online Inquiry
Global Services

Anti-EphA2 CAR-T Preclinical In Vivo Assay

All products and services are For Research Use Only and CANNOT be used in the treatment or diagnosis of disease.

Target Background

Erythropoietin-producing hepatocellular carcinoma A2 (EphA2) is a member of the tyrosine kinases Eph family. Human EphA2 gene locates at chromosome 1 and encodes a 130kDa protein that is 90% conserved to that of mouse. EphA2 binds to multiple membrane-anchored ligands including Ephrin-A1, -A3, -A4 and -A5. EphA2 and EphrinA1 signaling pathway is the most studied and reported one that regulates cellular organization patterns including adhesion and repulsion. However, during oncogenesis normal interactions between EphA2 to EphrinA2 are disrupted and result in overexpression of EphA2. Overexpression of EphA2 has been linked to enhancement of tumorigenesis, tumor migration, invasion and metastasis. Abnormal EphA2 levels are detected in various cancers such as melanoma, lung, breast, brain and ovarian cancer, prostate carcinomas and urinary bladder cancer. Recent studies on anti-EphA2 CAR-T cell therapy have made encouraging progresses for treating glioblastoma (GMB), which is one of the most aggressive brain tumors bearing survival rate less than 10%.

Anti-EphA2 CAR-T Cell Therapy

Data from preclinical in vivo tests for mice of xenograft glioblastoma are encouraging; regression of tumor size and absent acute toxicity are observed after local and systemic injection of EphA2 targeting CAR-T cells. To further investigate the efficacy of EphA2 re-directed T cells in patients with glioblastoma, a phase I and II clinical trials have been initiated in 2015 (NCT02575261) and expected to finish in 2020.

Anti-EphA2 CAR-T Preclinical in vivo Assay

Animal Models for in vivo Study of anti-EphA2 CAR-T Cell Therapy

Creative Biolabs provides well established in vivo tumor models for anti-EphA2 CAR-T cell therapy research. All animals are maintained in a clean and feed enriched environment before experiments. Our experienced group has extensive knowledge and expertise with animal experiments.
Xenograft model of glioblastoma
Immunodeficiency ICR-SCID mice are anesthetized throughout procedure and immobilized in stereotactic apparatus. EphA2+ GMB cells U373 are injected through small burr-hole, which is 1mm deep into skull and 2mm to right of bregma. Tumor bearing mice are treated with EphA2-targeting CAR-T cells through same incision after 10 days of tumor growth. Animals will be euthanized when tumor sizes reach certain criteria. Pain control will be given to mice after model established (subcutaneous injection of buprenorphine) if necessary.
Xenograft model of lung cancer
8 to 12 week-old SCID Beige mice are intravenously injected with lung cancer cells A549 and allow tumor growth for 2-3 weeks. Then, mice receive intravenous injection of anti-EphA2 CAR-T cells. Mice are euthanized in accordance to documents before postmortem analysis.

In vivo Assay Parameters and Techniques

Creative Biolabs offers comprehensive services to evaluate anti-EphA2 CAR-T therapy. Our technical group is very experienced and efficient in data production. Experimental techniques can be customized at customers'requests or purpose-orientated.
Efficacy Tests
Tumor remission monitored by tumor volume recording or bioluminescence imaging and survival curve tracking.
Viability and Bio-distribution Studies
Durability and bio-distribution are evaluated by bioluminescence imaging, immunochemistry staining and real-time PCR
Toxicity Evaluation
Pilot tolerated evaluation: route of administration, dosage, MTD
Clinical observation: body weight, food consumption, behavior and pathological signs
Cytokine storm surveillance (fever, hypertension, prolonged cytopenia)
Postmortem analysis
Tumorigenicity study
GLP-Compliant Preclinical Test
All our experiments are performed by well-trained and experienced technicians in a GLP-compliant and IACUC-regulated facility.

Scientists at Creative Biolabs are highly experienced and equipped with state-of-the-art facilities. We fully understand that researches of CAR-T therapy targeting EphA2 is a time-consuming and costly process. We would like to provide a wide range of services to assist you and your team to accelerate this process.

References

  1. Chow, et al. "T cells redirected to EphA2 for the immunotherapy of glioblastoma." Molecular Therapy 21.3 (2013): 629-637.
  2. Iwahori, et al. "Engager T cells: a new class of antigen-specific T cells that redirect bystander T cells." Molecular Therapy 23.1 (2015): 171-178.
Online Inquiry

For any technical issues or product/service related questions, please leave your information below. Our team will contact you soon.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Key Updates
Newsletter NEWSLETTER

The latest newsletter to introduce the latest breaking information, our site updates, field and other scientific news, important events, and insights from industry leaders

LEARN MORE NEWSLETTER
New Solution NEW SOLUTION

CellRapeutics™ In Vivo Cell Engineering: One-stop in vivo T/B/NK cell and macrophage engineering services covering vectors construction to function verification.

LEARN MORE SOLUTION
NOVEL SOLUTION NOVEL TECHNOLOGY

Silence™ CAR-T Cell: A novel platform to enhance CAR-T cell immunotherapy by combining RNAi technology to suppress genes that may impede CAR functionality.

LEARN MORE NOVEL TECHNOLOGY
NEW TECHNOLOGY NEW SOLUTION

Canine CAR-T Therapy Development: From early target discovery, CAR design and construction, cell culture, and transfection, to in vitro and in vivo function validation.

LEARN MORE SOLUTION
Receive our latest news and insights.