Book a Meeting

0
Inquiry Basket

There is no product in the shopping cart, buy it!

O-Linked Glycoengineering Service in Bacteria

O-Glycosylation in Bacteria

To date, multiple O-glycosylation mechanisms have been identified across diverse bacterial species. These mechanisms are categorized based on their reliance on O-oligosaccharyltransferases (OSTs) into two main types: OST-independent and OST-dependent glycosylation. In the OST-independent pathway, glycosyltransferases (GTs) work sequentially in the cytoplasm to add individual monosaccharides to acceptor proteins. OST-dependent glycosylation involves the assembly of an oligosaccharide on a lipid carrier Und-PP. This oligosaccharide is then transferred en bloc by an OST to specific serine or threonine residues within acceptor proteins. Examples of OSTs include NgPglO and NmPglL. The ability of OSTs to catalyze glycan attachment to natural O-glycoprotein targets in E. coli provides evidence of their potential to transfer non-native glycans to target proteins in glycoengineered bacteria. This capability opens up new possibilities for engineering glycosylation pathways in bacterial systems to produce glycoproteins with tailored glycan structures for various applications.

Fig.2 Glycoengineering of mAbs for enhanced sialylationFig.1 Model for O-glycosylation in bacteria.1

O-Linked Glycoengineering Services in Bacteria at Creative Biolabs

The identification of OSTs with relaxed specificity has significantly broadened the toolbox available for O-linked glycoengineering in bacteria. With a wealth of expertise in Cell Line Glycoengineering, Creative Biolabs is dedicated to implementing a variety of biosynthetic strategies, with the aim of engineering bacteria to mimic human-like O-glycosylation pathways. Through the co-expression of heterologous GTs and OSTs, we have achieved different human glycoproteins with the site-directed attachment of O-glycans such as the human mucin-type O-glycans.

Fig.2 Glycoengineering in bacteria for human mucin-type O-glycans. (Creative Biolabs Original)Fig.2 Glycoengineering in bacteria for human mucin-type O-glycans.

These modifications by Genetic Glycoengineering Techniques enable the stepwise biosynthesis of specific mucin-type O-glycans. We provide robust platforms in O-linked glycoengineering in bacteria for producing glycoproteins with defined O-glycosylation patterns, which allow for the customization of O-glycan structures to meet various research and application needs.

Features of Our Services

  • Comprehensive profiling of enzymes involved in bacterial O-linked glycosylation
  • Multiple strategies for O-linked glycoengineering in bacteria
  • Advanced techniques for highly efficient knockout/knockin of target gene
  • Customized optimization for specific O-glycans
  • Professional team with extensive experience in glycoengineering

Published Data

Technology: O-linked glycoengineering

Journal: Nature Chemical Biology

IF: 16.284

Published: 2020

Results: The researchers have developed pathways in E. coli that enable eukaryotic O-linked glycosylation. These pathways allow for the installation of mucin-type glycans onto serine residues in acceptor motifs derived from various human O-glycoproteins. This achievement represents a significant advancement in glycoengineering and opens up possibilities for the production of glycoproteins with specific glycan structures.

Fig.3 Engineered O-glycosylation pathway in E. coli. (Natarajan, 2020)Fig.3 Engineered O-glycosylation pathway in E. coli.2

Creative Biolabs offers a comprehensive range of O-linked glycoengineering services in bacteria customized to meet a variety of application requirements. If you have any specific questions or requirements, please feel free to contact us. We look forward to assisting you with your glycoengineering needs.

References

  1. Iwashkiw, Jeremy A., et al. "Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation." Molecular microbiology 89.1 (2013): 14-28.
  2. Natarajan, Aravind, et al. "Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria." Nature Chemical Biology 16.10 (2020): 1062-1070.
For Research Use Only.

Related Services:

  1. N-Linked Glycoengineering in Bacteria
Online Inquiry
Contact Us Follow us on